Refinement of the Crystal Structure of 3,5-Diamino-1,2,4-dithiazolium Iodide

By P. F. Rodesiler and E. L. Amma
Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208, U.S.A.

(Received 17 August 1970)

Abstract

The crystal structure of 3,4-diamino-1,2,4-dithiazolium iodide $\left(\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{H}_{4} \mathrm{I}\right)$ (thiouret hydroiodide) ($\mathrm{DADT}^{+} \mathrm{I}^{-}$) has been refined by full-matrix least-squares methods, including anisotropic temperature factors from counter data collected at room temperature, to a final R index of 0.032 . The crystals are orthorhombic, space group Pcmn, $Z=4, a=14 \cdot 025$ (6), $b=9 \cdot 274$ (3), $c=5 \cdot 349$ (1) \AA. The structure is composed of molecular ions, DADT ${ }^{+}$, and iodide ions with somewhat shorter than normal nonbonded distances between them. The DADT ${ }^{+}$ion, including hydrogen atoms, is planar well within experimental error. Fhe S-S, C-S, C-N distances are 2.083 (3); 1.752 (5), 1.317 (7); 1.330 (6) \AA, respectively. The shortest 'non'sonded' S...I distance is $3 \cdot 746$ (2) \AA.

Introduction

Thiourea $\left[\mathrm{SC}\left(\mathrm{NH}_{2}\right)_{2}\right]$ reacts with a number of oxidizing agents including some metal ions to form a disulfide linkage $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{C}-\mathrm{S}-\mathrm{S}-\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]^{2+}$. Dithiobiuret, on the other hand, is a much stronger reducing agent than thiourea and can be oxidized by iodide ion. During a systematic investigation of thiourea and dithiobiuret metal complexes, we prepared 3,5 -diamino-1,2,4-dithiazolium iod-

sure oxidation product of dithiobiuret. This particular ion is also known by the trivial name of the thiouret ion. We decided it would be of interest to examine the crystal structure of this compound to see the effect of the disulfide linkage and electron delocalization on the $\mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{N}$ bond lengths and to compare these distances with those found by us in the metal complexes of dithiobiuret and thiourea. An earlier singlecrystal structure investigation was reported (Foss \& Tjomsland, 1956, 1958) from two-dimensional data. Unfortunately, we were unaware of this work until our structure was completed. But since this earlier research was based on only two-dimensional data, we decided to report the structure solution based on three-dimensional counter data.

Experimental

3,5-Diamino-1,2,4-dithiazolium was prepared by dissolving dithiobiuret in an aqueous 20% hydroiodicacid solution with a pinch of iodine. Single-crystals suitable for diffraction studies were grown by slow evaporation of the solution. Preliminary Weissenberg and precession photographs established the space groups as Pc2 $2_{1} n$ or Pcmn (International Tables for X-ray Crystallography, 1952). The latter was assumed and verified by the structure solution and refinement. A crystal specimen in the shape of a parallelepiped
($0.22 \times 0.16 \times 0.36 \mathrm{~mm}$) was mounted about the long direction (c) in a glass capillary and used for the collection of intensity data on a Picker automatic diffractometer utilizing Zr -filtered Mo $K \alpha$ radiation. A capillary was necessary because the crystal reacted with or dissolved in the common adhesives.

Ten general reflections were accurately centered and used as a basis for a least-squares refinement (Spofford, 1968) of the cell parameters at room temperature with Mo $K \alpha$ radiation $(\lambda=0.71068 \AA)$. The crystal data are: $a=14.025$ (6), $b=9 \cdot 274$ (3), $c=5.349$ (1) $\AA, D_{\text {cale }}=2 \cdot 47$ $D_{\text {obs }}=2 \cdot 48$ (1); $Z=4$, F.V. $261 \cdot 0, V=696 \cdot 0 \AA^{3}$, space group Pcmn. (Numbers in parentheses here and elsewhere in this paper are estimated standard deviations in the least significant digits.)

The crystal was accurately centered on the diffractometer by variations of well known methods (Furnas, 1957). Intensities of 1650 independent hkl reflections were measured by stationary-counting backgrounds and scanning peaks by the usual $\theta-2 \theta$ technique with Mo $K \alpha$ radiation. Reflections $h k 0$ through $h k 3$ were recorded for 108 seconds (1.8° in 2θ) and the backgrounds were measured at $\pm 0.90^{\circ}$ in 2θ from the peak maxima for 40 seconds. For $h k 4$ through $h k 8$ the reflections were recorded for 114 seconds $\left(1.9^{\circ}\right)$ and the backgrounds were measured at $\pm 0.95^{\circ}$ in 2θ from the peak maxima for 40 seconds. A random sampling of symmetry-related reflections gave agreement within less than a standard deviation and no systematic variation was detected; thereafter only the symmetry-independent data were collected. A standard reflection was measured after every tenth reflection to ensure stability of operation and check any crystal decomposition. The total variation in intensity of this standard peak during data collection was less than three standard deviations. But it showed a slow overall downward drift during the data-collection period, probably indicating some crystal decomposition by the X-ray beam. All the data were scaled to the original standard to correct for this decomposition. The integrated intensity was calculated from:

$$
I(\text { net })=I(\operatorname{scan})-\frac{t_{s}}{t_{b}}\left(B_{1}+B_{2}\right)
$$

where B_{1} and B_{2} are the background counts，$t_{s}=$ scan time and $t_{b}=$ sum of background counting times for each reflection．The standard deviation of I（net）was calculated from $\sigma[I($ net $)]=\left[I(\text { scan })+\left(t_{s} / t_{b}\right)^{2}\left(B_{1}+B_{2}\right)\right]^{1 / 2}$ ． A reflection was considered above background when I（net）was greater than $3 \cdot 49\left[B_{1}+B_{2}\right]^{1 / 2}$ for $h k 0 \geq h k 3$ and $3 \cdot 59\left[B_{1}+B_{2}\right]^{1 / 2}$ for $h k 3 \geq h k 8$ ．By this criterion 853 nonzero $h k l$ reflections were retained．The calcu－ lated linear absorption coefficient（ μ ）was $54.7 \mathrm{~cm}^{-1}$ with Mo $\mathrm{K} \alpha$ radiation．No absorption correction was made．Neglect of an absorption correction probably makes our error estimates somewhat optimistic and
has some effect on the anisotropic temperature factors． The usual Lorentz－polarization corrections were applied to the intensities which were then reduced to structure factors．

Structure determination

Four molecules of DADT $+I^{-}$can be accommodated in the general positions of $P c 2_{1} n$ or in $P c m n$ with the ring nitrogen atom in the mirror plane and the iodine ions either on the mirror or on centers of symmetry． An unsharpened Patterson（Sly－Shoemaker－van den Hende）function was computed and the iodine atom was located on the mirror and the sulfur atoms were located in the general positions of Pcmn．A set of

Fig．1．Perspective view of the DADT ${ }^{+}$molecule with distances and angles indicated．The two halves of the molecular ion are related by a mirror plane and the angles are denoted on one half and the distances on the other half．

Table 1．Structure factors
（a）Observed and calculated（first column is h followed by F_{o} and $F_{c} . F_{c} / 10$ is absolute）．
 ば

 \＆た

 に

 －＊

Table 1 (cont.)
(b) Unobserved and calculated. These are on same scale as (a). The 400, 201, 531, 151 and 002 reflections listed here are in reality not unobserved but, in fact, not included in the refinement because of poor background measurements or equipment malfunctions.
$F_{\text {min }} \leq F($ calc $)<2.0 \times F_{\text {min }}$

structure factors was calculated with these atomic coordinates using program ORFLS (Busing, Martin \& Levy, 1962) with local modifications. The resultant reliability index, R, was $0 \cdot 26$. The remainder of the non-hydrogen atoms were located from three-dimensional electron density sections (Harris, 1964) computed with phases based on the sulfur and iodine positions. A full-matrix isotropic refinement for all non-hydrogen atoms converged to a conventional R value of $0 \cdot 10$. Refinement with anisotropic temperature
factors for iodine converged to an R of 0.057 and refinement with anisotropic temperature factors for all non-hydrogen atoms converged to an R of $0 \cdot 043$. A difference Fourier map at this point clearly resolved the hydrogen atoms. The inclusion of variables for the two hydrogen coordinates and a constant isotropic temperature factor for hydrogen of $3.0 \AA^{2}$ further reduced R to 0.032 . The least-squares refinement was performed with program $O R F L S$, modified locally for use on the on the IBM 7040 computer (Busing, Martin \& Levy, 1962). Atomic scattering factors for the iodide ion, neutral carbon, nitrogen and sulfur (Cromer \& Waber, 1965) were used. Real and imaginary dispersion corrections were applied to the iodine and the real correction was applied to sulfur (Cromer, 1965; Ibers \& Hamilton, 1964); H-atom scattering factors were from Stewart (Stewart, Davidson \& Simpson, 1965). We minimized the function $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, and the observations were weighted on counting statistics and a 4% intensity factor (Busing \& Levy, 1957). Atomic parameter shifts for the last cycle of refinement were less than $0 \cdot 01 \sigma$. The final disagreement index $R\left(R=\Sigma| | F_{0}\left|-\left|F_{0}\right|\right| / \Sigma\left|F_{0}\right|\right)$, weighted $\quad R=\left[\Sigma w| | F_{o} \mid-\right.$ $\left.\left.\left|F_{c}\right|\right|^{2} / \Sigma w\left|F_{o}\right|^{2}\right]^{1 / 2}$ and standard error $\left[\Sigma w\left(F_{o}-F_{c}\right)^{2} /\right.$ $(N O-N V)]^{1 / 2}$, where $N O=852$ and $N V=46$, were found to be $0.032,0.042$ and 1.35 , respectively. A final difference map was relatively featureless with the largest positive peak $\frac{1}{5}$ the peak height of the hydrogen peaks found earlier.

Observed, unobserved and calculated structure factors are listed in Table 1. Final atomic coordinates and thermal parameters are given in Table 2. Interatomic distances, angles and errors, which were computed with the $O R F F E$ program with local modifi-

Table 2. Final atomic positional parameters, thermal parameters and e.s.d.'s*
Anisotropic temperature factors of the form: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} k h+2 \beta_{13} h l+2 \beta_{13} k l\right) \times 10^{4}\right]$

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
I(1)	$0 \cdot 6074$ (0)	0.7500 (-)	$0 \cdot 3252$ (1)	40 (0)	56 (1)	184 (2)	0 (-)	7 (1)	0 (-)
S(1)	$0 \cdot 4151$ (1)	0.6377 (2)	-0.2294 (3)	39 (1)	58 (1)	159 (4)	3 (1)	-20 (1)	4 (2)
N(1)	$0 \cdot 3376$ (4)	$0 \cdot 5006$ (5)	$0 \cdot 1540$ (10)	48 (3)	56 (5)	224 (17)	-2 (3)	26 (7)	14 (9)
N(2)	$0 \cdot 3347$ (5)	0.7500 (-)	$0 \cdot 1788$ (12)	31 (3)	59 (6)	157 (19)	0 (-)	7 (7)	0 (-)
C(1)	$0 \cdot 3572$ (3)	0.6286 (6)	$0 \cdot 0604$ (9)	21 (2)	62 (6)	136 (15)	1 (3)	2 (5)	-1 (8)
H(1)	$0 \cdot 355$ (5)	0.433 (7)	0.008 (16)	0 (-)	0 (-)	0 (-)	0 (-)	0 (-)	0 (-)
$\mathrm{H}(2)$	$0 \cdot 301$ (6)	0.498 (8)	$0 \cdot 313$ (14)	0 (-)	0 (-)	0 (-)	0 (-)	0 (-)	0 (-)

* Numbers in parentheses here and in succeeding tables are e.s.d.'s in the least significant digits. (-) indicates a fixed parameter.

Table 3. Equations of least-squares plane of the type $A X+B Y+C Z-D=0 \dagger$ $A=-0 \cdot 8856, B=0 \cdot 0001, C=-0 \cdot 4644, D=-4 \cdot 5855$
Deviations of atoms from the least-squares plane (\AA):

S(1)	$0 \cdot 000$ (1)	S(2)	0.000 (1)	$\mathrm{N}(1)$	$0 \cdot 010$ (4)
$\begin{array}{lllll}\mathrm{N}(2) & -0.016(5) & \mathrm{N}(3) & 0.010(4) & \mathrm{C}(1) \\ \mathrm{C}(2) & -0.002(3) & -0.002(3)\end{array}$					
Deviation of atoms from the least-squares plane that were not considered in the plane (\AA):					
I(1)	-3.767 (4)	H(1)	$0 \cdot 15$ (5)	H(2)	0.07 (6)
H(3)	$0 \cdot 15$ (5)	H(4)	0.07 (6)		

$\dagger X, Y$, and Z refer to atom positional parameters in \AA. All atoms across the mirror plane were considered and they were equally weighted in the least-squares plane (Rollett, 1965).
cations on the IBM 7040 (Busing, Martin \& Levy, 1964), are shown in Figs. 1, 2 \& 3. Table 3 contains the least-squares plane (Spofford, 1967).

Results and discussion

The crystal structure may be described as 3,5-diamino-1,2,4-dithiazolium (DADT) ${ }^{+}$ions and iodide ions separated by normal nonbonded distances (Figs. 1, 2 \& 3). Bond lengths and angles in the isolated (DADT) ${ }^{+}$ ions are shown in Fig. 1. The overall agreement with the results of Foss \& Tjomsland (1958) is surprisingly good considering the authors' analysis was made with two-dimensional photographic data. Table 3 reveals that the (DADT) ${ }^{+}$ion is planar and well within experimental error. It is noteworthy that the (DADT) ${ }^{+}$ ion in (DADT) ${ }^{+} \mathrm{Br}^{-}$(Hordvik \& Joys, 1965), (DADT) ${ }^{+}$ $\mathrm{Cl} . \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ (Hordvik \& Sletten, 1966) is planar as is the related 1,2-dithiolium ion in 4-phenyl-1,2-dithiolium iodide [bromide, chloride. $\mathrm{H}_{2} \mathrm{O}$, thiocyanate] (Hordvik \& Kjøge, 1969), 3,5-diacetamido-1,2-dithiolium bromide (Hordvik \& Kjøge, 1966) and 3-phenyl-1,2dithiolium iodide (Hordvik \& Kjøge, 1965).

A considerable amount of structure data of varying degrees of accuracy on five-membered conjugated cyclic disulfides, of which DADT^{+}is a representative now exists (Table 4). Much has been said in the literature concerning the lengthening of the $S-S$ bond and short intermolecular $S-X$ distances. Note that in Table 4 one of the shortest $\mathrm{S}-\mathrm{S}$ distances (3-Ph-1,

Fig. 2. Perspective view of the molecular packing down the c axis. The e.s.d.'s of S-I, I-I, H-I and H-H are $0.002,0.001$, 0.07 and $0.1 \AA$, respectively.
Table 4. Summary of relevant distances in related molecules (\AA)
Reference
This work
Hordvik \& Joys (1965).
Hordvik \& Sletten (1966), Furnas (1957).
Hordvik \& Kjøge (1969).
Hordvik \& Sletten (1966), Knox (1967).
Hordvik \& Sletten (1966), Knox (1967).
Hordvik \& Kjøge (1965).
Hordvik \& Sletten (1966), Knox (1967).
Hordvik \& Joys (1965).
Hordvik \& Kjøge (1966).
Spofford \& Amma (1970).
Girling \& Amma (1968).
Lüth, Hall, Spofford \& Amma (1969).

S-C	$\mathrm{C}-\mathrm{N}_{\text {int(C-C) }}$	C-Next	X-S
1.752 (5)	1.330 (6)	$1 \cdot 317$ (7)	3.746 (2) I-S
1.72 (3), 1.74 (3)	1.35 (3), 1.33 (3)	$1 \cdot 32$ (4), $1 \cdot 37$ (3)	$3.38 \mathrm{Br}-\mathrm{S}$
1.767 (7), 1.756 (7)	1.34 (1), 1.345 (9)	$1 \cdot 310$ (9), $1 \cdot 30$ (1)	$3.27 \mathrm{Cl}-\mathrm{S}$
1.678 (8)	1.39 (1), 1.50 (1)		2.87 (1) N-S
1.67 (2)	$1 \cdot 40$ (3)		3.503 (8) I-S
1.70 (1)	$1 \cdot 37$ (2)		
1.67 (3), 1.71 (3)	1.39 (5), 1.39 (4)		3.37 (1) I-S
1.673 (9)	1.38 (1)		
1.74 (1), 1.75 (1)	1.36 (2), 1.39 (2)		$3 \cdot 11$ (1) O-S
1.678 (4), 1.707 (4)	1.388 (5), 1.375 (5)	1.344 (6), 1.317 (6)	$2 \cdot 621 \mathrm{~N}-\mathrm{S}$
1.712 (7), 1.743 (7)	$1 \cdot 335$ (8), 1.350 (8)	1.34 (1), 1.322 (9)	2.584 (7) N-S
$1 \cdot 720$ (8), 1•728 (8)	$1 \cdot 32$ (1), 1.34 (1)	1.31 (1), 1.34 (1)	2.561 (6) N-S

[^0]
$\mathrm{Ni}(\mathrm{DTB})_{2}$ Nomenclature: $\mathrm{DADT}^{+}=3,5$-diamino-1,2,4-dithiazolium ion
$\mathrm{Ph}=$ phenyl dithiolium ion 3,5 DA-1,2-DT ${ }^{+}=3$,5-diamino-1,2-dithiolium ion 3,5 DAc^{2}-1,2-DT ${ }^{+}=3$,5-diacetamido-1,2-dithiolium ion

2-DT ${ }^{+}$) is accompanied by one of the shortest I-S intermolecular distances ($3 \cdot 37 \AA$). A similar situation exists for $4-\mathrm{Ph}-1,2-\mathrm{DT}^{+} \mathrm{SCN}^{-}$. Therefore, it seems unlikely that charge is simply transferred from X to the sulfur and in particular to an antibonding $\mathrm{S}-\mathrm{S} \sigma$ molecular orbital as has been postulated. If, indeed, charge is accepted by DADT ${ }^{+}$, it would go into a relatively low lying π^{*} molecular orbital (Rodesiler \& Amma, 1970). The acceptance of electronic charge into a delocalized π^{*} molecular orbital would also make the $\mathrm{S}-\mathrm{S}$ difference not as sensitive to intermolecular interactions as would otherwise seem. It is worthy of note that 'short' nonbonded $\mathrm{S}-\mathrm{S}$ distances exist, intrachelate and interchelate, in both $\mathrm{Ni}(\mathrm{DTB})_{2}$ (Lüth, Hall, Spofford \& Amma, 1969) and $\mathrm{Pd}(D T B)_{2}$ (Girling \& Amma, 1968). It is unfortunate that the $3,5 \mathrm{DA}-1,2-\mathrm{DT}^{+} \mathrm{I}^{-}$structure is not complete since this would give a measure of the effect of the ring nitrogen atom and the external amide group on the $\mathrm{S}-\mathrm{S}$ and $\mathrm{C}-\mathrm{S}$ distances. At this point the $\mathrm{S}-\mathrm{S}$ distances seem to be more readily rationalized in terms of electron-attracting groups relative to sulfur, e.g. $-\mathrm{NH}_{2}$ and $-\mathrm{CO}-\mathrm{NH}_{2}$, rather than intermolecular sulfur-halogen interactions.

The S-C distance in DADT ${ }^{+}$is definitely longer than in DTBH (Spofford \& Amma, 1970) as one would expect from delocalization of the π electrons involved in the $\mathrm{C}-\mathrm{S}$ bond. Unfortunately, owing to the magnitude of the standard deviations, little comparison can be made of the $\mathrm{C}-\mathrm{S}$ distances in the compounds listed except to note that in the dithiolium s : lts this distance is $\sim 1.68 \AA$ and in the dithiazolium salts it is $\sim 1.75 \AA$.

The $\mathrm{C}-\mathrm{N}$ internal distances in DADT^{+}have also been elongated over those of free dithiobiuret and this also can be understood in terms of electron delocalization. On the other hand, the terminal $\mathrm{C}-\mathrm{N}$ distances found in DADT ${ }^{+}$and dithiobiuret do not seem to differ significantly.

The angles in DADT^{+}(Fig. 1) are somewhat different from those of dithiobiuret simply because of the ring closure and the C-S-S angle of 92.7 (2) ${ }^{\circ}$. This may also contribute to some of the differences in distances between dithiobiuret and DADT ${ }^{+}$.

We wish to acknowledge support from the National Institutes of Health, Grant No. GM-13985.

References

Busing, W. R. \& Levy, H. A. (1957). J. Chem. Phys. 26, 563.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE, A Fortran Crystallographic Function and Error Program. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Foss, O. \& Tiomsland, O. (1956). Acta Chem. Scand. 10, 869.

Foss, O. \& Tjomsland, O. (1958). Acta Chem. Scand. 12, 1799.

Furnas, T. C., Jr (1957). Single Crystal Orienter Instruction Manual. Milwaukee, Wis.: General Electric Co.

Fig. 3. Perspective view of the molecular packing down the a axis. The e.s.d's of $\mathrm{I}\left(1^{\prime}\right)-\mathrm{S}\left(2^{\prime}\right), \mathrm{I}(1)-\mathrm{N}(2), \mathrm{N}(2)-\mathrm{S}\left(1^{\prime}\right), \mathrm{S}\left(1^{\prime}\right)-\mathrm{C}(1)$, $\mathrm{S}\left(1^{\prime}\right)-\mathrm{N}(1), \mathrm{S}\left(1^{\prime}\right)-\mathrm{H}(2)$ and $\mathrm{H}(1)-\mathrm{H}\left(1^{\prime \prime}\right)$ are $0.002,0.007,0.006,0.005,0.006,0.08$ and $0.1 \AA$, respectively,

Girling, R. L. \& Amma, E. L. (1968). Chem. Comm. 1487.

Harris, D. R. (1964). Patterson and electron density calculations done on an IBM 7040 with $E R F R$-3 program, a modification of the Sly-Shoemaker-van den Hende ERFR2 program.
Hordvik, A. \& Joys, S. (1965). Acta Chem. Scand. 19, 1539.

Hordvik, A. \& Kıøge, H. M. (1965). Acta Chem. Scand. 19, 935.
Hordvik, A. \& Kıøge, H. M. (1966). Acta Chem. Scand. 20, 1923.
Hordvik, A. \& Kıøge, H. M. (1969). Acta Chem. Scand. 23, 1367.
Hordvik, A. \& Sletten, J. (1966). Acta Chem. Scand. 20, 1907.

Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781.
International Tables for X-ray Crystallography (1952). Vol.I. Birmingham: Kynoch Press.

Knox, K. (1967). Master Card Program for Picker Four Angle Programmer, p. 11. Prepared by F. C. Carter. Picker Instruments, Cleveland, Ohio.
LÜth, H., Hall, E. A., Spofford, W. A. III \& Amma, E. L. Chem. Comm. 520.
Rodesiler, P. F. \& Amma, E. L. (1970). Unpublished molecular orbital calculations.
Rollett, J. S. (1965). Computing Methods in Crystallography, p. 22. New York: Pergamon Press.
Spofford, W. A. III. (1967). Least Squares Plane Program for the IBM 1620.
Spofford, W. A., III. (1968). Program of least-squares fit to compute the lattice dimensions, based on Furnas (1957) for the IBM 1620, with $\omega_{0}, \chi_{0}, 2 \Theta_{0}$ as fixed machine constants.
Spofford, W. A., III. \& Amma, E. L. (1970). To be published.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

An Electron Diffraction Study of the Structures of Thiophene, 2-Chlorothiophene and 2-Bromothiophene. A Note

By J.L.Derissen, J. W. M. Kocken and R.H. van Weelden
Laboratorium voor Kristalchemie, Rijksuniversiteit Utrecht, The Netherlands

(Received 21 December 1970)
The conclusions from the electron diffraction study of Harshbarger \& Bauer are discussed. It is thought that they have not established that the thiophene ring deviates from $C_{2_{\nu}}$ symmetry.

Introduction

In their investigation of the molecular structures of thiophene, 2-chlorothiophene and 2-bromothiophene, Harshbarger \& Bauer (1970) (hereafter to be abbreviated to HB for convenience), made the attempt to establish whether the thiophene ring geometry is immutable upon substitution, as it must be assumed to be in benzene and s-triazene. To this end HB determined the structures of 2-chlorothiophene and 2-bromothiophene by gas-phase electron diffraction. They concluded that their investigation clearly shows that in these compounds the thiophene ring deviates from $C_{2 v}$ symmetry when halogen atoms are attached to the 2 position, and that, although their diffraction analyses did not distinguish between two slightly different molecular models, other physical and chemical evidence favoured one of these.

However, a careful comparison of these two models, A and B, and of the standard deviations of the geometry parameters (see Tables 1 and 2) suggests that a symmetric $C_{2 v}$ structure which is an 'average' of A and B or even a completely undistorted thiophene ring might also fit nicely in with the electron diffraction data, the
more so as the convergence difficulties involved in the greatly correlated parameter set in the unrestrained unsymmetrical refinement as described by HB, might decrease considerably by introducing parameter constraints via a symmetrical ring. At least, one could investigate quantitatively the significance of the unsymmetric ring used by HB in relation to a $C_{2 v}$ ring or a thiophene ring by least-squares refinements of all these structures, and subsequent comparison of residuals, standard deviations etc.

In this note the results of such a comparison are presented.

Results

The HB procedure was followed as closely as possible (Bonham \& Bartell, 1959). Their observed intensities were reproduced by careful reading of their photographically enlarged Figs. 5 and 7 for integral q values. This of course introduces additional, though small, random errors compared with HB's data. Scattering factors for Br were taken from Cromer, Larson \& Waber's (1964) tables, and those for C, H, S and Cl from Hanson, Herman, Lea \& Skillman's (1964) data. All refinements were carried out with our ALGOL-60

[^0]: $\mathrm{C}-\mathrm{N}_{\text {ext }}=$ carbon to terminal (external) nitrogen
 $\mathrm{C}-\mathrm{C}=$ in the dithiolium ion the ring N is replaced by C . $\mathrm{X}-\mathrm{C}=$ shortest 'nonbonded' respective distance DTBH = dithiobiuret
 $\mathrm{M}(\mathrm{DTB})_{2}=$ bis-(dithiobiuret) $\mathbf{M}(\mathrm{II})$

